MapReduce Performance Models for Hadoop 2.x

نویسندگان

  • Daria Glushkova
  • Petar Jovanovic
  • Alberto Abelló
چکیده

MapReduce is a popular programming model for distributed processing of large data sets. Apache Hadoop is one of the most common open-source implementations of such paradigm. Performance analysis of concurrent job executions has been recognized as a challenging problem, at the same time, that it may provide reasonably accurate job response time at significantly lower cost than experimental evaluation of real setups. In this paper, we tackle the challenge of defining MapReduce performance models for Hadoop 2.x. While there are several efficient approaches for modeling the performance of MapReduce workloads in Hadoop 1.x, the fundamental architectural changes of Hadoop 2.x require that the cost models are also reconsidered. The proposed solution is based on an existing performance model for Hadoop 1.x, but it takes into consideration the architectural changes of Hadoop 2.x and captures the execution flow of a MapReduce job by using queuing network model. This way the cost model adheres to the intra-job synchronization constraints that occur due the contention at shared resources. The accuracy of our solution is validated via comparison of our model estimates against measurements in a real Hadoop 2.x setup. According to our evaluation results, the proposed model produces estimates of average job response time with error within the range of 11% 13.5%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments

Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...

متن کامل

Hadoop Performance Models

Hadoop MapReduce is now a popular choice for performing large-scale data analytics. This technical report describes a detailed set of mathematical performance models for describing the execution of a MapReduce job on Hadoop. The models describe dataflow and cost information at the fine granularity of phases within the map and reduce tasks of a job execution. The models can be used to estimate t...

متن کامل

A MR Simulator in Facilitating Cloud Computing

MapReduce is an enabling technology in support of Cloud Computing. Hadoop which is a mapReduce implementation has been widely used in developing MapReduce applications. This paper presents Hadoop simulatorHaSim, MapReduce simulator which builds on top of Hadoop. HaSim models large number of parameters that can affect the behaviors of MapReduce nodes, and thus it can be used to tune the performa...

متن کامل

Towards Energy Efficient MapReduce

Energy considerations are important for Internet datacenters operators, and MapReduce is a common Internet datacenter application. In this work, we use the energy efficiency of MapReduce as a new perspective for increasing Internet datacenter productivity. We offer a framework to analyze software energy efficiency in general, and MapReduce energy efficiency in particular. We characterize the pe...

متن کامل

Budget based dynamic slot allocation for MapReduce clusters

MapReduce is one of the programming models for processing large amount of data in cloud where resource allocation is one of the research areas since it is responsible for improving the performance of Hadoop. However the resource allocation can be further improved by focusing on a set of mechanisms, that includes the budget based HFS algorithm where the fast worker node is identified first based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017